理学 >>> 数学 >>> 运筹学 >>> 线性规划 >>>
搜索结果: 1-15 共查到知识库 线性规划相关记录37条 . 查询时间(7.422 秒)
In this paper we study the large N limit of the O(N)-invariant linear sigma model, which is a vector-valued generalization of the Φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasys...
This paper investigates the uniqueness of parameters via persistence of excitation for switched linear systems. The main contribution is a much weaker sufficient condition on the regressors to be pers...
In this tutorial, an approach to the analysis and design of linear control systems based on numerical convex optimization over closed-loop maps is presented. Convexity makes numerical solution effecti...
For linear systems with delays, we define a new class of Lyapunov-like functionals that may be used to prove stability. We also show how we may design a stabilizing (delayed) state feedback for delay ...
We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga ...
We present a new algorithm for the global solution of optimization problems involving bilinear matrix inequalities (BMIs). The method is based on a technique known in large-scale and global optimizati...
该文提出一类新的周期为2pq, p和q为不同奇素数的广义分圆序列,并给出了该序列线性复杂度的计算公式。在已知序列支撑集的情况下,利用该公式可以得到该序列线性复杂度的精确值。
线性规划与非线性规划是数学规划中经典而重要的研究方向. 主要介绍该研究方向的背景知识,并介绍线性规划、无约束优化和约束优化的最新算法与理论以及一些前沿与热点问题. 交替方向乘子法是一类求解带结构的约束优化问题的方法,近年来倍受重视. 全局优化是一个对于应用优化领域非常重要的研究方向. 因此也试图介绍这两个方面的一些最新研究进展和问题.
With few exceptions, known explicit solutions of the curve shortening flow (CSE) of a plane curve, can be constructed by classical Lie point symmetry reductions or by functional separation of variable...
We prove an h-principle with boundary condition for a certain class of sheaves : Embop d −→ Top.
This paper is about two arrangements of hyperplanes. The first —the Shi arrangement — was introduced by Jian-Yi Shi [11, Chapter 7] to describe the Kazhdan-Lusztig cells in the affine Weyl group of ty...
In this paper we give a complete solution to the Hamilton-Waterloo problem for the case of Hamilton cycles and C4k-factors for all positive integers k.
在多目标控制中, 线性加权法常常被用于把多目标问题转化为单目标问题的研究中。若各子 目标与总体目标存在非凸关系时, 该方法难以有效。本文构造了一种对策模型来解决这类多目标控制 问题, 提出了利用对策理论求解这类问题的方法。该方法可将决策人对目标的偏好加入模型中, 从而 放宽了问题的凸性限制。
先给出线性分式规划的一个对偶定理, 然后利用这个结果建立和证明线性分式—二次双层规 划的对偶定理。
讨论一类极小化双层规划问题:其第一层目标函数是线性分式函数,第二层是K (K 1)个带有参数的线性规划.给出了这类双层规划问题有解的一个充要条件,并且证明了该问题的解可以在多面体的某个顶点处达到.

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...