>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-11 共查到normal form相关记录11条 . 查询时间(0.047 秒)
Maximally nonlinear Boolean functions in nn variables, where n is even, are called bent functions. There are several ways to represent Boolean functions. One of the most useful is via algebraic normal...
We introduce the twisted μ4μ4-normal form for elliptic curves, deriving in particular addition algorithms with complexity 9M+2S9M+2S and doubling algorithms with complexity 2M+5S+2m2M+5S+2m over a bin...
Adaptive and Sophisticated Learning in Repeated Normal Form Games.
In this paper it is shown that the use of Jordan normal form instead of Hermite normal form would improve substantially the efficiency and the security of the lattice based signature scheme. In this s...
We introduce a class of Hamiltonian scattering systems which can be reduced to the "normal form" $\dot P=0$, $\dot Q=P$, by means of a global canonical transformation $ (P,Q)=A(p,q), p,q\in R^n$, defi...
We discuss a class of normal forms of the completely resonant non–linear Schr¨odinger equation on a torus. We stress the geometric and combinatorial constructions arising from this study. Further anal...
We adapt the Kolmogorov's normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant ellip...
We prove the Poisson geometric version of the Local Reeb Stability (from foliation theory) and of the Slice Theorem (from equivariant geometry),which is also a generalization of Conn’s linearization t...
摘要利用非线整变换,本文推导出了一种只需通过简单代数运算即可算出Hopf分叉Normal Form系数的简单方法,用这种方法求解非线性振动问题,只需把原方程变换成本文讨论的典则形式的一阶微分方程组,然后进行简单的代数运算即可得到原非线性振动方程的解,这种方法简单方便容易掌握。
摘要在文[1]基础上,提出一种仅知道派生线性系统零实部特征值时求解非线性系统非半单分叉NormalForm的方法.通过适当的分类,将要求解的线性代数方程组分为若干相互独立的方程组.将所求系数向量按字典序列排列后,各独立方程组的系数矩阵是上三角矩阵.在非共振情形,各系数向量可按反字典序列递推求出.在共振情形,根据文中的二个定理,巧妙地由一简单的常数矩阵的最大秩子矩阵,定位其系数矩阵的满秩子矩阵,解决...
双频内共振系统的Normal Form 及其简化

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...