工学 >>> 力学 农业工程 林业工程 工程与技术科学基础学科 测绘科学技术 材料科学 矿山工程技术 石油与天然气工程 冶金工程技术 机械工程 光学工程 仪器科学与技术 动力与电气工程 能源科学技术 核科学技术 电子科学与技术 信息与通信工程 控制科学与技术 计算机科学技术 化学工程 纺织科学技术 印刷工业 服装工业、制鞋工业 轻工技术与工程 食品科学技术 土木建筑工程 水利工程 交通运输工程 船舶与海洋工程 航空、航天科学技术 兵器科学与技术 环境科学技术 安全科学技术 工业设计
搜索结果: 1-15 共查到工学 FCM相关记录53条 . 查询时间(0.073 秒)
为了自动确定多光谱遥感影像中地物目标类别数,该文提出一种基于可变类模糊C均值(Fuzzy C-Means, FCM)的多光谱遥感影像分割方法。首先定义像素与聚类的非相似性测度并据此构建目标函数,而后通过求解目标函数得到最优模糊隶属度和聚类中心。其次,研究模糊因子与影像地物目标类别数的关系,并通过定义划分熵(Partition Entropy, PE)指数优选模糊因子,选择PE指数值稳定收敛后所对应...
以往对水体病原体的研究主要是通过监测粪大肠杆菌作为指示,然而研究表明粪大肠杆菌与水中病毒和细菌病原体呈现出较差的相关性. 因此,选取水中典型病原体并对其进行定量检测是当前需要解决的技术问题. 为此本研究建立了流式细胞术和定量PCR联合使用方法,用于快速获取水环境中总病毒、细菌以及几种典型病原体(大肠杆菌、军团菌、腺病毒、贾第虫和隐孢子虫等)的浓度水平,并将该方法应用到污水处理厂进出水及受纳河流上下...
传统模糊??-均值(FCM) 算法要求一个样本对于各个聚类的隶属度之和满足归一化条件, 从而导致算法对噪声和孤立点敏感, 对非均衡分布样本的聚类有效性降低. 针对该问题, 提出一种改进模糊隶属函数约束的FCM聚类算法, 通过放松归一化条件, 推导出新的隶属度划分公式, 并在聚类过程中不断进行隶属度修正, 从而达到消除噪声样本、提高聚类有效性的目的. 最后通过实验结果对比验证了改进算法的正确性.
不确定性存在于图像处理、模式识别等众多领域的实际应用中, 模糊?? 均值聚类(FCM) 算法虽广泛应用于这些领域, 但其处理不确定性的能力较差. 引入区间二型模糊理论能有效提升算法处理不确定性的能力, 但相应地造成算法复杂度增加, 制约了区间二型FCM算法的推广应用. 鉴于此, 提出增强型区间二型FCM算法, 通过优化初始聚类中心和降型运算, 极大地减少了区间二型FCM算法的运算量, 并提升算法的...
不确定性存在于图像处理、模式识别等众多领域的实际应用中, 模糊?? 均值聚类(FCM) 算法虽广泛应用于这些领域, 但其处理不确定性的能力较差. 引入区间二型模糊理论能有效提升算法处理不确定性的能力, 但相应地造成算法复杂度增加, 制约了区间二型FCM算法的推广应用. 鉴于此, 提出增强型区间二型FCM算法, 通过优化初始聚类中心和降型运算, 极大地减少了区间二型FCM算法的运算量, 并提升算法的...
针对传统视频型火焰检测算法误报率高、局限性强等问题,提出一种四步火焰检测算法。首先利用一种自适应混合高斯模型(GMM)检测视频序列中的运动目标;然后采用模糊C 均值(FCM)聚类算法分割疑似火焰区域与非火区域;再提取疑似火焰区域的面积变化、表面不均度等时空特征参数;最后将这些特征参数输入训练好的支持向量机(SVM)分类器以识别火焰区域。实验结果表明,算法不但在提高了检测率的同时降低了误检率,而且适...
针对基于拉普拉斯支持向量机(LapSVM)的半监督分类方法需要将全部无标记样本加入训练样本集中训练得到分类器,算法需要的时间和空间复杂度高,不能有效处理大规模图像分类的问题,提出了模糊C-均值聚类(FCM)预选取样本的LapSVM图像分类方法。该方法利用FCM算法对无标记样本聚类,根据聚类结果选择可能在最优分类超平面附近的无标记样本点加入训练样本集,这些样本可能是支持向量,携带对分类有用的信息,其...
基于一般化的模糊划分GIFP-FCM聚类算法是模糊C均值算法(FCM)的一种改进算法,一定程度上克服了FCM算法对噪声的敏感性,但由于其没有考虑图像的邻域信息,对含有较大噪声的图像分割效果不理想。为此,提出将局部隶属度和局部邻域信息等引入到GIFP-FCM算法的目标函数中,通过重新计算每个像素的局部隶属度和邻域信息,较好地克服了噪声影响。利用该算法对合成图像、脑图分割的实验结果表明,对于含有高斯噪...
针对产品的性能退化轨迹呈现为非线性特性, 且个体的性能退化数据为小样本的情形, 为了充分利用同类产品的性能退化数据进行特定个体的实时寿命预测, 从研究退化轨迹相似性的角度出发, 提出一类基于小波支持向量回归机 (Wavelet support vector regression, WSVR)和模糊C均值(Fuzzy c-means, FCM)聚类的实时寿命预测方法. 该方法分为离线和实时两个阶段:...
针对测量图像平台直方图均衡算法中平台值选取困难的问题,基于C-值聚类(Fuzzy C-means clustering) 理论,提出一种自适应平台直方图均衡增强算法。该算法通过对图像直方图进行C-均值聚类,自适应地选择平台阈 值,能够在均衡图像的同时有效保持图像细节。实验证明:该算法对测量图像具有较好地增强效果,能够有效地抑 制图像的背景,突出目标细节。
提出了一种基于改进型模糊C均值聚类算法的牛肉大理石花纹提取方法。该方法结合了快速模糊C均值(FCM)聚类算法,对传统FCM算法中的隶属函数、聚类数C和初始聚类中心点选取方法进行了优化。试验表明,该方法使牛肉大理石花纹提取的准确度由76.2%提高到85.7%。
针对模糊C-均值聚类方法(FCM)应用于机组分群时存在易收敛于局部最优值的问题, 提出了改进的PSO-FCM算法用于机组分群, 并阐述了分群算法中关键参数的选取方法。为充分利用FCM多特征量分析的优点, 同时引入功角、角速度作为分群特征量, 避免了复合功角法的复合系数选取问题;提出了利用同调性指标自适应确定分群数目的方法, 充分利用了模糊划分矩阵的结果, 增强了分群的灵活性;分群时采用约一个摇摆周...
针对FCM算法应用于基因表达数据分析时存在的局限性,提出一种特征加权自适应FCM算法。该算法在FCM算法的基础上引入数据集预处理机制,可依据数据集的分布特征自适应地获取分类数目和初始聚类中心,并通过ReliefF算法实现特征权值的自动确定。同时,新算法考虑了不同属性对分类贡献的差异,在FCM算法中引入特征权重。将算法应用于真实基因表达数据集,实验结果表明,算法能够自适应地确定聚类数目、获得稳定性较...
针对城市道路交通状态判别的问题,提出了一种混合蛙跳算法(SFLA)与模糊C-均值算法(FCM)相结合的SFLA-FCM聚类算法。SFLA是一种全新的后启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。SFLA-FCM使用SFLA的优化过程代替FCM的基于梯度下降的迭代过程,有效地避免了FCM对初值敏感及容易陷入局部极小的缺陷。将该算法用于城市交通流数据的聚类分析结果表明,与单一FCM聚类...
模糊C均值聚类算法(FCM)广泛用于彩色图像分割,但该算法存在需要预先指定聚类数目、计算量大、耗时长且易陷入局部最优等缺点。提出一种自适应快速模糊C均值彩色图像分割方法,该方法首先运用蚁群算法,自动获取初始聚类中心和聚类数目,然后使用基于梯度的分水岭算法对原始彩色图像进行预分割,得到一系列由色彩特征空间具有一致性的点构成的子集,最后对这些子集的中心进行模糊聚类。实验结果表明:由于子集数量远小于原始...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...